商城专区 鱼友交易
楼主: cngogjivw
打印 上一主题 下一主题

我瞎说,你们瞎看---------解决鱼病的根源

[复制链接]
三湖慈鲷
 榜  眼

此等级代表知识和贡献
当前:榜眼(7级)
  • 项  目当前下级
  • 主题数:249-
  • 回复数:10248-
  • 精华数:29-
  • 回答数:516+84
  • 采纳数:66-
  • 热帖数:28+2
此等级代表活跃度
当前:鱼仙(10级)
当前等级积分31538分离下一等级鱼道(11级)还有58462分,加油!

249

主题

91

关注

134

粉丝
+ 关 注
发私信

元旦纪念勋章 鸡年纪念勋章 乖巧汤圆 三周年纪念勋章 猜鱼达人 表情大咖 和妈妈的合影 试用达人 粽情三湖 百科助手 设计大师 万圣节勋章 签到之星 签到之王 签到之神 视频达人 三湖新人 官方群纪念勋章 优秀版主 精华男爵 精华子爵 精华伯爵 微信达人 捣蛋万圣节

龙币
146
 兑换福利
61楼#
cngogjivw 发表于 2017-11-2 13:32:47 |只看该作者
研究发展

折叠综述

微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有49.877%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病微生物的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。

微生物非常小,必须通过显微镜放大约1000倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想像一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一升牛奶中可有含有50亿个细菌。微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。

一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。微生物因为微生物很小,构造又简单,所以人们充分认识它,并发展成为一门学科,与其他学科比起来,还是很晚的。尽管如此,人们已经在广泛的应用微生物了。我国劳动人民很早就认识到微生物的存在和作用,也是最早应用微生物的少数国家之一。据考古学推测,我国在8000年前已经出现了曲蘖酿酒了,4000多年前我国酿酒已十分普遍,而且当时埃及人也已学会烤制面包和酿制果酒。

2500年前中国人民发明酿酱、醋,知道用曲治疗消化道疾病。公元6世纪(北魏时期),我国贾思勰的巨著《齐民要术》详细地记载了制曲、酿酒、制酱和酿醋等工艺。在农业上,虽然还不知道根瘤菌的固氮作用,但已经在利用豆科植物轮作提高土壤肥力。这些事实说明,尽管人们还不知道微生物的存在,但是已经在同微生物打交道了,在应用有益微生物的同时,还对有害微生物进行预防和治疗。为防止食物变质,采用盐渍、糖渍、干燥、酸化等方法。在我国隆庆年间就开始用人痘预防天花。人痘预防天花是我国对世界医学上的一大贡献,这种方法先后传到俄国、日本、朝鲜、土耳其及英国,1798年英国医生琴纳(Jenner)提出用牛痘预防天花。微生物学作为一门学科,是从有显微镜开始的,微生物学发展经历了三个时期:形态学时期、生理学时期和现代微生物学的发展。形态学时期微生物的形态观察是从安东·列文虎克(Antony Van Leeuwenhock 1632-1732)发明的显微镜开始的,它是真正看见并描述微生物的第一人,他的显微镜在当时被认为是最精巧、最优良的单式显微镜,他利用能放大50~300倍的显微镜,清楚地看见了细菌和原生动物,而且还把观察结果报告给英国皇家学会,其中有详细的描述,并配有准确的插图。1695年,安东·列文虎克把自己积累的大量结果汇集在《安东·列文虎克所发现的自然界秘密》一书里。他的发现和描述首次揭示了一个崭新的生物世界——微生物世界。这在微生物学的发展史上具有划时代的意义。[2]

折叠编辑本段研究学者

折叠生理学时期

继列文虎克发现微生物世界以后的200年间,微生物学的研究基本上停留在形态描述和分门别类阶段。直到19世纪中期,以法国的巴斯德(Louis Pasteur,1822-1895)和德国的柯赫(Robert Koch,1843-1910)为代表的科学家才将微生物的研究从形态描述推进到生理学研究阶段,揭露了微生物是造成腐败发酵和人畜疾病的原因,并建立了分离、培养、接种和灭菌等一系列独特的微生物技术。从而奠定了微生物学的基础,同时开辟了医学和工业微生物等分支学科。巴斯德和柯赫是微生物学的奠基人。[2]

折叠巴斯德

微生物学家巴斯德原是化学家,曾在化学上做出过重要的贡献,后来转向微生物学研究领域,为微生物学的建立和发展做出了卓越的贡献。主要集中在下列三个方面:① 彻底否定

了“自然发生”学说。“自生说”是一个古老学说,认为一切生物是自然发生的。到了17世纪,虽然由于研究植物和动物的生长发育和生活循环,是“自生说”逐渐消弱,但是由于技术问题,如何证实微生物不是自然发生的仍是一个难题,这不仅是“自生说”的一个顽固阵地,同时也是人们正确认识微生物生命活动的一大屏障。巴斯德在前人工作的基础上,进行了许多试验,其中著名的曲颈瓶试验无可辩驳地证实,空气内确实含有微生物,他们引起有机质的腐败。巴斯德自制了一个具有细长而弯曲的颈的玻瓶,其中盛有有机物水浸液,经加热灭菌后,瓶内可一直保持无菌状态,有机物不发生腐败,一旦将瓶颈打断,瓶内浸液中才有了微生物,有机质发生腐败。巴斯德的试验彻底否定了“自生说”,并从此建立了病原学说,推动了微生物学的发展。

② 免疫学——预防接种。Jenner虽然早在1798年发明了种痘法可预防天花,但却不了解这个免疫过程的基本机制,因此,这个发现没能获得继续发展。1877年,巴斯德研究了鸡霍乱,发现将病原菌减毒可诱发免疫性,以预防鸡霍乱病。其后它又研究了牛、羊炭疽病和狂犬病,并首次制成狂犬疫苗,证实其免疫学说,为人类防病、治病做出了重大贡献。

③ 证实发酵是由微生物引起的。究竟发酵是一个由微生物引起的生物过程还是一个纯粹的化学反应过程,曾是化学家和微生物学家激烈争论的问题。巴斯德在否定“自生说”的基础上,认为一切发酵作用都可能与微生物的生长繁殖有关。经不断地努力,巴斯德终于分离到了许多引起发酵的微生物,并证实酒精发酵是由酵母菌引起的。还研究了氧气对酵母菌的发育和酒精发酵的影响。此外,巴斯德还发现乳酸发酵、醋酸发酵和丁酸发酵都是不同细菌所引起的。为进一步研究微生物的生理生化奠定了基础。

④ 其它贡献。一直沿用至今天的巴斯德消毒法(60~65℃作短时间加热处理,杀死有害微生物的一种消毒法)和家蚕软化病问题的解决也是巴斯德的重要贡献,它不仅在实践上解决了当时法国酒变质和家蚕软化病的实际问题,而且也推动了微生物病原学说的发展,并深刻影响医学的发展。[2]

折叠柯赫

柯赫是著名的细菌学家,由于他曾经是一名医生,因此对病原细菌的研究做出了突出的贡献:①具体证实了炭疽病菌是炭疽病的病原菌;②发现了肺结核病的病原菌,这是当时死亡率极高的传染性疾病,因此柯赫获得了诺贝尔奖;③提出了证明某种微生物是否为某种疾病病原体的基本原则——柯赫原则:首先在患病肌体里存在着一种特定的病原菌,并可以从该肌体里分离得到纯培养;然后用得到的纯培养接种敏感动物,表现出特有的性状;最后从被感染的敏感动物中又一次获得与原病原菌相同的纯培养。由于柯赫在病原菌研究方面的开创性工作,自19世纪70年代至20世纪20年代成了发现病原菌的黄金时代,所发现的各种病原微生物不下百余种,其中还包括植物病原菌。柯赫除了在病原菌方面的伟大成就外,在微生物基本操作技术方面的贡献更是为微生物学的发展奠定了技术基础,这些技术包括:①用固体培养基分离纯化微生物的技术,这是进行微生物学研究的基本前提,这项技术一直沿用至今;②配制培养基,也是当今微生物研究的基本技术之一。这两项技术不仅是具有微生物研究特色的重要技术,而且也为当今动植物细胞的培养做出了十分重要的贡献。巴斯德和柯赫的杰出工作,使微生物学作为一门独立的学科开始形成,并出现以他们为代表而建立的各分支学科,例如细菌学(巴斯德、柯赫等)、消毒外科技术(J. Lister),免疫学(巴斯德、Metchnikoff、Behring、Ehrlich等)、土壤微生物学(Beijernck Winogradsky 等)、病毒学(Ivanowsky、Beijerinck等)、植物病理学和真菌学(Bary、Berkeley等)、酿造学(Hensen、Jorgensen 等)以及化学治疗法(Ehrlish 等)。微生物学的研究内容日趋丰富,使微生物学发展更加迅速。[5]

折叠编辑本段现代发展

微生物20世纪上半叶微生物学事业欣欣向荣,微生物学沿着两个方向发展,即应用微生物学和基础微生物学。在应用方面,对人类疾病和躯体防御机能的研究,促进了医学微生物学和免疫学的发展。青霉素的发现(Fleming,1929)和瓦克斯曼(Waksman)对土壤中放线菌的研究成果导致了抗生素科学的出现,这是工业微生物学的一个重要领域。

环境微生物学在土壤微生物学研究的基础上发展起来。微生物在农业中的应用使农业微生物学和兽医微生物学等也成为重要的应用学科。应用成果不断涌现,促进了基础研究的深入,于是细菌和其它微生物的分类系统在20世纪中叶出现了,对细胞化学结构和酶及其功能的研究发展了微生物生理学和生物化学,微生物遗传和变异的研究导致了微生物遗传学的诞生。微生物生态学在20世纪60年代也形成了一个独立学科。20世纪80年代以来,在分子水平上对微生物研究迅速发展,分子微生物学应运而生。在短短的时间内取得了一系列进展,并出现了一些新的概念,较突出的有,生物多样性、进化、三原界学说;细菌染色体结构和全基因组测序;细菌基因表达的整体调控和对环境变化的适应机制;细菌的发育及其分子机理;细菌细胞之间和细菌同动植物之间的信号传递;分子技术在微生物原位研究中的应用。经历约150年成长起来的微生物学,在21世纪将为统一生物学的重要内容而继续向前发展,其中两个活跃的前沿领域将是分子微生物遗传学和分子微生物生态学。

微生物产业在21世纪将呈现全新的局面。微生物从发现到现在短短的300年间,特别是20世纪中叶,已在人类的生活和生产实践中得到广泛的应用,并形成了继动、植物两大生物产业后的第三大产业。这是以微生物的代谢产物和菌体本身为生产对象的生物产业,所用的微生物主要是从自然界筛选或选育的自然菌种。21世纪,微生物产业除了更广泛的利用和挖掘不同生境(包括极端环境)的自然资源微生物外,基因工程菌将形成一批强大的工业生产菌,生产外源基因表达的产物,特别是药物的生产将出现前所未有的新局面,结合基因组学在药物设计上的新策略将出现以核酸(DNA或RNA)为靶标的新药物(如反义寡核苷酸、肽核酸、DNA疫苗等)的大量生产,人类将完全征服癌症、**病以及其他疾病。此外,微生物工业将生产各种各样的新产品,例如降解性塑料、DNA芯片、生物能源等,在21世纪将出现一批崭新的微生物工业,为全世界的经济和社会发展做出更大贡献。[3]

折叠编辑本段中国发展

中国是具有5000年文明史的古国,中国劳动人民对微生物的认识和利用是最早的几个国家之一。特别是在制酒、酱油、醋等微生物产品以及用种痘、麦曲等进行防病治疗等方面具有卓越的贡献。但微生物作为一门科学进行研究,中国起步较晚。中国学者开始从事微生物学研究在20世纪之初,那时一批到西方留学的中国科学家开始较系统的介绍微生物知识,从事微生物学研究。1910-1921年微生物间伍连德用近代微生物学知识对鼠疫和霍乱病原的探索和防治,在中国最早建立起卫生防疫机构,培养了第一支预防鼠疫的专业队伍,在当时这项工作居于国际先进地位。20世纪20-30年代,中国学者开始对医学微生物学有了较多的试验研究,其中汤飞凡等在医学细菌学、病毒学和免疫学等方面的某些领域做出过较高水平的成绩,例如沙眼病原体的分离和确认是具有国际领先水平的开创性工作。

现代化的发酵工业、抗生素工业、生物农药和菌肥工作已经形成一定的规模,特别是改革开放以来,中国微生物学无论在应用和基础理论研究方面都取得了重要的成果,例如中国抗生素的总产量已跃居世界首位,中国的两步法生产维生素C的技术居世界先进水平。近年来,中国学者瞄准世界微生物学科发展前沿,进行微生物基因组学的研究,现已完成痘苗病毒天坛株的全基因组测序,最近又对中国的辛德毕斯毒株(变异株)进行了全基因组测序。1999年又启动了从中国云南省腾冲地区热海沸泉中分离得到的泉生热袍菌全基因组测序,目前取得可喜进展。中国微生物学进入了一个全面发展的新时期。但从总体来说,中国的微生物学发展水平除个别领域或研究课题达到国际先进水平,为国外同行承认外,绝大多数领域与国外先进水平相比,尚有相当大的差距。因此如何发挥中国传统应用微生物技术的优势,紧跟国际发展前沿,赶超世界先进水平,还需作出艰苦的努力。[5]

折叠编辑本段相互作用

在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。微生物以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组,研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大! 从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。

为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程。[3]

折叠编辑本段世界地位

当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。
回复 每点赞两次可获得1龙币

使用道具 举报

三湖慈鲷
 榜  眼

此等级代表知识和贡献
当前:榜眼(7级)
  • 项  目当前下级
  • 主题数:249-
  • 回复数:10248-
  • 精华数:29-
  • 回答数:516+84
  • 采纳数:66-
  • 热帖数:28+2
此等级代表活跃度
当前:鱼仙(10级)
当前等级积分31538分离下一等级鱼道(11级)还有58462分,加油!

249

主题

91

关注

134

粉丝
+ 关 注
发私信

元旦纪念勋章 鸡年纪念勋章 乖巧汤圆 三周年纪念勋章 猜鱼达人 表情大咖 和妈妈的合影 试用达人 粽情三湖 百科助手 设计大师 万圣节勋章 签到之星 签到之王 签到之神 视频达人 三湖新人 官方群纪念勋章 优秀版主 精华男爵 精华子爵 精华伯爵 微信达人 捣蛋万圣节

龙币
146
 兑换福利
62楼#
cngogjivw 发表于 2017-11-2 13:33:12 |只看该作者
地下微生物

1989年,美国几所大学和能源部的一些专家,在南卡罗来纳州进行调查时,发现了一个“全新的生态系统”。他们在550米的地表下发现了3000多种微生物组织,其中有许多属首次发现。

这些微生物,大多数是从地下水里吸收氧气,而另一些则不需要氧气就能生存。这些微生物吸收养料少,新陈代谢缓慢,它们的生存就像一些地表动物冬眠一样。[5]

折叠编辑本段海洋微生物

折叠定义

英文名称:marine microorganism

定义1:分布在海洋中的个体微小、形态结构简单的单细胞或多细胞生物。

所属学科:水产学(一级学科);水产基础科学(二级学科)。

定义2:海洋中个体微小,构造简单的低等生物的总称。包括细菌、放线菌、霉菌、酵母、病毒、衣原体、支原体、噬菌体和微型藻及微型原生动物等。

所属学科:资源科技(一级学科);海洋资源学(二级学科)。

以海洋水体为正常栖居环境的一切微生物。但由于学科传统及研究方法的不同,本文不介绍单细胞藻类。

折叠特性

嗜盐性

海洋微生物最普遍的特点。真正的海洋微生物的生长必需海水。海水中富含各种无机盐类和微量元素。钠为海洋微生物生长与代谢所必需此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。

嗜冷性

大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。那些能在 0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。嗜冷菌主要分布于极地、深海或高纬度的海域中。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。

 嗜压性

海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。海洋最深处的静水压力可超过1000大气压。深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制迄今尚难于获得纯培养菌株。根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。

低营养性

海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。这种现象说明常规的平板法并不是一种最理想的分离海洋微生物方法。

多形性

在显微镜下观察细菌形态时,有时在同一株细菌纯培养中可以同时观察到多种形态,如球形椭圆形、大小长短不一的杆状或各种不规则形态的细胞。这种多形现象在海洋革兰氏阴性杆菌中表现尤为普遍。这种特性看来是微生物长期适应复杂海洋环境的产物。

发光性

在海洋细菌中只有少数几个属表现发光特性。发光细菌通常可从海水或鱼产品上分离到。细菌发光现象对理化因子反应敏感,因此有人试图利用发光细菌为检验水域污染状况的指示菌。[4]

折叠编辑本段空间微生物

生态学的研究表明,地球是万物生存的摇篮,它包括陆域生态系、水域生态系及环绕地球的大气生态系等自然生态系。能够存活于大气层环境中的微生物构成了自然界中大气微生物生态系。大气层分为对流层、同温层和电离层。犹豫大气层随着高度的上升,温度很快下降(对流层的温度只有-43——-83摄氏度),不利于生命活动的化学、物理等因子(臭氧、微重力、UV射线等)也增强,因此,这一生态系中微生物只有抗逆休眠体及来源于带有微生物细胞或孢子的尘埃、雾滴、动物呼吸和排泄物等。微生物一旦进入或者超越自然生态系中的电离层,由于银河射线及地磁俘获辐射形成的强辐射、微重力等空间环境因子的作用就难以存活。尽管如此,近年来,一门研究地球以外生命(包括其他星球上的生命)的新兴科学——《外空生物学》(Exobiology)正在形成。这一研究领域里,外空生物学家一方面利用各种航天飞行器(高空气球、轨道卫星、空间站、航天飞机等)探索生物对空间环境因子作用的反应(即生物学效应),为人类征服空间提供理论知识和技术依据,及空间生物学(Space Biology)研究的主要内容:另一方面越来越多的科学家还试图通过从包括火星、月球、木星等其他星球上取回的岩石和尘埃样品的检测,寻找地球外可能存在的生命形式。
回复 每点赞两次可获得1龙币

使用道具 举报

三湖慈鲷
 榜  眼

此等级代表知识和贡献
当前:榜眼(7级)
  • 项  目当前下级
  • 主题数:249-
  • 回复数:10248-
  • 精华数:29-
  • 回答数:516+84
  • 采纳数:66-
  • 热帖数:28+2
此等级代表活跃度
当前:鱼仙(10级)
当前等级积分31538分离下一等级鱼道(11级)还有58462分,加油!

249

主题

91

关注

134

粉丝
+ 关 注
发私信

元旦纪念勋章 鸡年纪念勋章 乖巧汤圆 三周年纪念勋章 猜鱼达人 表情大咖 和妈妈的合影 试用达人 粽情三湖 百科助手 设计大师 万圣节勋章 签到之星 签到之王 签到之神 视频达人 三湖新人 官方群纪念勋章 优秀版主 精华男爵 精华子爵 精华伯爵 微信达人 捣蛋万圣节

龙币
146
 兑换福利
63楼#
cngogjivw 发表于 2017-11-2 13:33:47 |只看该作者
研究技术

折叠显微技术

工具是人类器官的延伸。要观察肉眼看不到的微生物,没有适当工具是不可能的。前面所说的列文虎克用显微镜揭示微小的生命世界之前80多年,有个叫杨森的荷兰人已经制造出显微镜,而且在列文虎克之前,英国人虎克已经描绘过显微镜下长在皮革上的兰色霉菌的形态(图1),不过,看到细菌、原生动物等活的微生物,并把它们的运动记录下来的第一人是列文虎克(图2)。随着工业发展和技术进步,显微镜经过300多年的改进,现在已经是林林总总,形式多样了。但从功能上说,无非是从器具和观察对象两方面着手提高放大倍数和增加分辨细微结构能力。在器具上,包括选择投射于物体上的波束的性质及为便于观察而不断改善操纵装置;在观察对象上,则是如何突显待观察的部分。波束有光波和电磁波,用光波的叫做光学显微镜,用电磁波的叫电子显微镜。

光波只能对大于其波长的物体造象,可见光的波长大约是0.4—0.8微米,所以光学显微镜不可能观察到小于200纳米(0.2微米)的物体,目前的光学显微镜放大和分辨效率已经越来越接近其极限,大约可以将对象放大2000倍。电磁波的波长是光波波长的十万分之一,电子显微镜的放大倍数目前可以达到百万,可以分辨十分之一纳米。这样,不仅可以看到细胞中许多细微结构,还能观察分子的形态。

折叠无菌操作技术

显微镜技术问世而使人类开始认识了微生物,然而在对微生物的生命活动和功能有所知晓之前,微生物学并没有诞生。促使微生物学迅速诞生的,是无菌操作技术和纯种培养技术。在1861年,伟大的微生物学家巴斯德做了一个有名的实验。对于微生物学发展具有决定性的作用。

巴斯德用一个有长颈的圆底烧瓶装上肉汤,如果就这么放着,几天后肉汤便浑浊发臭了,用显微镜可以观察到里面长了许多细菌。如果把长长的瓶颈用火焰烧成弯曲状,虽然瓶口还是和外界相通,氧气可以自由出入,可是肉汤放置很长时间也不会变浑浊。如果把里面的肉汤从弯曲处往瓶口倾折,让液体接触瓶口,再让液体流回瓶中,几天后,液体又变浑发臭了。巴斯德这个实验充分说明,肉汤之所以变浑发臭,是肉汤里面的细菌繁殖造成的,如果加热杀死了肉汤里面的细菌,又不让外面的细菌进去,肉汤就不会有细菌生长。液体和瓶口接触后,因为空气中的尘埃和细菌沾在瓶口,通过肉汤进入瓶内,所以几天后会变浑发臭。而且,烧瓶尽管有弯长的颈,可是瓶口是和外界相通的,空气可以自由进入,所以可以保证里面有氧气,所以不是没有氧气而使细菌不能生长。

直到20世纪60年代,在伦敦的一个研究所中,还一直保存着19世纪后期为否定自然发生论所用的的一些陈年肉汤,它们在70年后依然清亮如故。巴斯德这个简单但是具有说服力的著名实验,证实了微生物只能从微生物产生而不能自然地从没有生命的物质发生。从此,人们开始认识到无菌操作的重要。灭过菌的物质在适当保护下将保持无菌状态,除非有人去感染它。巴斯德奠定了这个微生物学的基本原理。

折叠纯种培养技术

自然界中,各种微生物之间并不是离群素居,彼此老死不相往来的。在任何天然环境中,都有多种微生物共同生活。土壤是微生物的大本营,1克普通的菜园土中就有数百种微生物,个体数量可能超过上亿。连人的口腔中也有几十种细菌。由于巴斯德对葡萄酒变质的研究,人们认识到某种微生物和物质的某种化学变化有直接关系,酵母菌可以把葡萄酒里的葡萄糖变成酒精,醋酸细菌可以使葡萄酒变酸。

巴斯德和其他一些学者的工作又证明传染病是由某些微生物感染所致。既然每种微生物有不同的形态和生理特征,它们在自然界的作用和对人类的影响也必然有差异。我们要了解某种微生物对于人类有害还是有益,或者目前与人类还没有什么特别密切的关系,就必须单独把这种微生物分离出来研究。这就是在无菌技术的基础上微生物学的另一项基本技术——纯种分离技术。

折叠编辑本段最新科研进展

免疫细胞癌变可导致各种白血病/淋巴癌的发生,这些是人类常见的恶性肿瘤。淋巴细胞和粒细胞等由于某些特殊原因发生变异而诱发细胞癌变,其中Bcr-Abl融合癌基因主要诱发了慢性粒细胞白血病(CML)和急性淋巴细胞白血病(ALL)。Bcr-Abl癌蛋白介导细胞癌变的过程涉及多种信号转导通路的分子调控,其中JAK/STAT是关键信号通路之一。SOCS家族蛋白作为细胞因子信号通路的抑制因子,能有效地调节JAK/STAT信号通路,从而维持人体免疫细胞的正常功能和生理平衡。然而在Bcr-Abl介导的免疫细胞癌变过程中,SOCS蛋白的作用及其调节机制迄今尚不清楚。

在此基础上,针对Bcr-Abl癌蛋白如何改变SOCS家族的负调控功能展开研究。唐山拓普生物科技通过蛋白质互作和免疫共沉淀等技术,筛选发现了当Bcr-Abl表达时,SOCS-1和SOCS-3具有较高的酪氨酸磷酸化水平,且鉴定其主要的酪氨酸磷酸化位点分别是SOCS-1的Y155和Y204,SOCS-3的Y221。其合作者美国Rothman教授研究组在CML病人外周血白细胞中也发现了SOCS-1的酪氨酸磷酸化。陈吉龙研究组通过一系列生物化学、分子生物学、以及细胞生物学等实验证实了Bcr-Abl介导的SOCS-1和SOCS-3酪氨酸磷酸化使其失去了负调节JAK激酶的功能,并在人白血病K562细胞中无法有效地抑制JAK2、STAT5的活性,使BCL-XL蛋白持续表达,从而抑制了细胞的凋亡。应用小鼠致瘤模型,进一步证明了SOCS-1和SOCS-3主要酪氨酸磷酸化位点的突变能显著地抑制Bcr-Abl介导的肿瘤形成及细胞转化。

此项研究揭示了Bcr-Abl癌蛋白通过磷酸化SOCS-1和SOCS-3的酪氨酸残基使其失去了负调节JAK/STAT信号通路的功能,阐明了Bcr-Abl诱导STAT5持续活化从而促进Bcr-Abl介导免疫细胞癌变的机理。这些研究结果加深了我们对免疫细胞癌变机制的认识,为彻底阐明免疫细胞癌变的信号调控网络提供了帮助。该研究成果已在线发表在国际肿瘤免疫学核心刊物之一Neoplasia上。
回复 每点赞两次可获得1龙币

使用道具 举报

三湖慈鲷
 榜  眼

此等级代表知识和贡献
当前:榜眼(7级)
  • 项  目当前下级
  • 主题数:249-
  • 回复数:10248-
  • 精华数:29-
  • 回答数:516+84
  • 采纳数:66-
  • 热帖数:28+2
此等级代表活跃度
当前:鱼仙(10级)
当前等级积分31538分离下一等级鱼道(11级)还有58462分,加油!

249

主题

91

关注

134

粉丝
+ 关 注
发私信

元旦纪念勋章 鸡年纪念勋章 乖巧汤圆 三周年纪念勋章 猜鱼达人 表情大咖 和妈妈的合影 试用达人 粽情三湖 百科助手 设计大师 万圣节勋章 签到之星 签到之王 签到之神 视频达人 三湖新人 官方群纪念勋章 优秀版主 精华男爵 精华子爵 精华伯爵 微信达人 捣蛋万圣节

龙币
146
 兑换福利
64楼#
cngogjivw 发表于 2017-11-2 13:38:13 |只看该作者
菌群失调是指由于宿主、外环境的影响,导致机体某一部位的正常菌群中各种细菌出现数量和质量变化,原来在数量和毒力上处于劣势的细菌或耐药菌株居于优势地位,在临床上发生菌群失调症或称菌**替症。

菌群失调(dysbacteriosis)是指机体某部位正常菌群中各菌种间的比例发生较大幅度变化而超出正常范围的状态,由此产生的病症,称为菌群失调症或菌**替症。菌群失调时,多引起二重感染或重叠感染,即在原发感染的治疗中,发生了另一种新致病菌的感染。菌群失调的发生多见于使用抗生素和慢性消耗性疾病等。临床上长期大量应用广谱抗生素后,大多数敏感菌和正常菌群被抑制或杀灭,但耐药菌则获得生存优势而大量繁殖致病,如耐药金黄色葡萄球菌引起腹泻、败血症,对抗生素不敏感的白假丝酵母菌引起鹅口疮、**炎、肠道和**感染。

回复 每点赞两次可获得1龙币

使用道具 举报

三湖慈鲷
 榜  眼

此等级代表知识和贡献
当前:榜眼(7级)
  • 项  目当前下级
  • 主题数:249-
  • 回复数:10248-
  • 精华数:29-
  • 回答数:516+84
  • 采纳数:66-
  • 热帖数:28+2
此等级代表活跃度
当前:鱼仙(10级)
当前等级积分31538分离下一等级鱼道(11级)还有58462分,加油!

249

主题

91

关注

134

粉丝
+ 关 注
发私信

元旦纪念勋章 鸡年纪念勋章 乖巧汤圆 三周年纪念勋章 猜鱼达人 表情大咖 和妈妈的合影 试用达人 粽情三湖 百科助手 设计大师 万圣节勋章 签到之星 签到之王 签到之神 视频达人 三湖新人 官方群纪念勋章 优秀版主 精华男爵 精华子爵 精华伯爵 微信达人 捣蛋万圣节

龙币
146
 兑换福利
65楼#
cngogjivw 发表于 2017-11-6 23:07:32 来自 |只看该作者
鱼到了呼吸急促的程度说明细菌已经侵入内脏,几乎无解了
回复 每点赞两次可获得1龙币

使用道具 举报

三湖慈鲷
 榜  眼

此等级代表知识和贡献
当前:榜眼(7级)
  • 项  目当前下级
  • 主题数:249-
  • 回复数:10248-
  • 精华数:29-
  • 回答数:516+84
  • 采纳数:66-
  • 热帖数:28+2
此等级代表活跃度
当前:鱼仙(10级)
当前等级积分31538分离下一等级鱼道(11级)还有58462分,加油!

249

主题

91

关注

134

粉丝
+ 关 注
发私信

元旦纪念勋章 鸡年纪念勋章 乖巧汤圆 三周年纪念勋章 猜鱼达人 表情大咖 和妈妈的合影 试用达人 粽情三湖 百科助手 设计大师 万圣节勋章 签到之星 签到之王 签到之神 视频达人 三湖新人 官方群纪念勋章 优秀版主 精华男爵 精华子爵 精华伯爵 微信达人 捣蛋万圣节

龙币
146
 兑换福利
66楼#
cngogjivw 发表于 2017-11-6 23:27:27 来自 |只看该作者
TDS是总溶解性固体物质 TotalDissolvedSolids 的英文首字母缩写,是指水中总溶解性物质的浓度,单位毫克/升(mgl),主要反映的是水中Ca2+ MG2+ Na+ K+ 等离子的浓度,与水的硬度 导电率有较好的对应关系,TDS值越小,水中Ca2+ MG2+ Na+ K+ 等离子的浓度越低,电导率越小。
但TDS值小,并不代表水质好,TDS值高也不代表水质差。
TDS值的大小根本无法反应水中有害重金属离子浓度的大小,水中有细菌多少 有机物浓度高低 亚硝酸浓度是否超标 有没有 农药残留这些都都无法通过TDS值的大小来反应。即使是水中的细菌超标,重金属离子浓度超标了,只要水中溶解的Ca2+ MG2+ Na+ K+等离子浓度减小了,TDS值也会变小。
所以说TDS值不能判断水质好坏
回复 每点赞两次可获得1龙币

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

fastpost
返回顶部 意见箱